Package: pdynmc 0.9.12.9001
pdynmc: Moment Condition Based Estimation of Linear Dynamic Panel Data Models
Linear dynamic panel data modeling based on linear and nonlinear moment conditions as proposed by Holtz-Eakin, Newey, and Rosen (1988) <doi:10.2307/1913103>, Ahn and Schmidt (1995) <doi:10.1016/0304-4076(94)01641-C>, and Arellano and Bover (1995) <doi:10.1016/0304-4076(94)01642-D>. Estimation of the model parameters relies on the Generalized Method of Moments (GMM) and instrumental variables (IV) estimation, numerical optimization (when nonlinear moment conditions are employed) and the computation of closed form solutions (when estimation is based on linear moment conditions). One-step, two-step and iterated estimation is available. For inference and specification testing, Windmeijer (2005) <doi:10.1016/j.jeconom.2004.02.005> and doubly corrected standard errors (Hwang, Kang, Lee, 2021 <doi:10.1016/j.jeconom.2020.09.010>) are available. Additionally, serial correlation tests, tests for overidentification, and Wald tests are provided. Functions for visualizing panel data structures and modeling results obtained from GMM estimation are also available. The plot methods include functions to plot unbalanced panel structure, coefficient ranges and coefficient paths across GMM iterations (the latter is implemented according to the plot shown in Hansen and Lee, 2021 <doi:10.3982/ECTA16274>). For a more detailed description of the GMM-based functionality, please see Fritsch, Pua, Schnurbus (2021) <doi:10.32614/RJ-2021-035>. For more details on the IV-based estimation routines, see Fritsch, Pua, and Schnurbus (WP, 2024) and Han and Phillips (2010) <doi:10.1017/S026646660909063X>.
Authors:
pdynmc_0.9.12.9001.tar.gz
pdynmc_0.9.12.9001.zip(r-4.5)pdynmc_0.9.12.9001.zip(r-4.4)pdynmc_0.9.12.9001.zip(r-4.3)
pdynmc_0.9.12.9001.tgz(r-4.4-any)pdynmc_0.9.12.9001.tgz(r-4.3-any)
pdynmc_0.9.12.9001.tar.gz(r-4.5-noble)pdynmc_0.9.12.9001.tar.gz(r-4.4-noble)
pdynmc_0.9.12.9001.tgz(r-4.4-emscripten)pdynmc_0.9.12.9001.tgz(r-4.3-emscripten)
pdynmc.pdf |pdynmc.html✨
pdynmc/json (API)
NEWS
# Install 'pdynmc' in R: |
install.packages('pdynmc', repos = c('https://markusfritsch.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/markusfritsch/pdynmc/issues
Last updated 3 days agofrom:67c1bb18cc. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:data.infoFDLSjtest.fctmtest.fctninstNLIVNLIV.altoptimInpDensTime.plotpdynmcstrucUPD.plotwald.fctwmat
Dependencies:data.tablelatticeMASSMatrixnloptrnumDerivoptimxpracmarbibutilsRdpack
pdynmc -- An R-Package for Estimating Linear Dynamic Panel Data Models Based on Nonlinear Moment Conditions
Rendered frompdynmc-introLong.pdf.asis
usingR.rsp::asis
on Nov 20 2024.Last update: 2021-06-15
Started: 2021-06-14
R-package pdynmc: GMM Estimation of Dynamic Panel Data Models Based on Nonlinear Moment Conditions
Rendered frompdynmc-pres-in-a-nutshell.pdf.asis
usingR.rsp::asis
on Nov 20 2024.Last update: 2021-06-15
Started: 2021-06-14